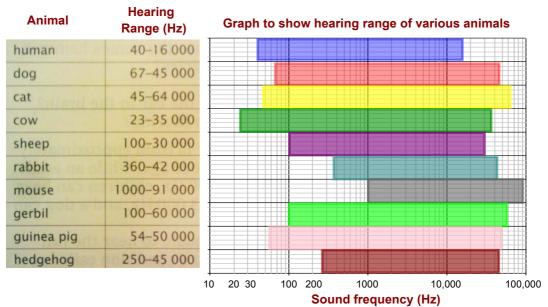
What's the question?

Think of a question (about sound) for each of these answers.

- 1. Hz
- 2. Vacuum
- 3. The number of vibrations per second
- 4. No
- 5.20 Hz


- 6. Loudness
- 7. 300 m/s
- 8. Higher pitch
- 9. Amplitude
- 10.600m

Graph feedback

- Should it be a line graph / scaer graph / bar chart?
- Make sure you label both axes and give units.
- The tle should make it clear what the graph shows is it showing the highest frequency the animals can hear, the lowest frequency they can hear, or something else?
- It's ok to miss out some numbers in your scale at the start with a zig-zag line, but you can't do this again between numbers further along your scale.

Using a 'logarithmic' graph scale

A logarithmic graph scale goes up by a certain **multiple** for every division. e.g. this graph goes up by a multiple of 10x for every major division on the horizontal axis. This may sound strange, but logarithmic scales are **really useful** for things that have a very wide variation, like hearing ranges. Try to plot these hearing ranges - the first two have been done for you.

Loudness of sound

Sound loudness is measured in decibels (dB) - see chart for examples.

The loudness depends on how close you are to the source - as sound spreads out it becomes less intense and is quieter.

Exposure to loud sound can damage hearing, e.g.

- tinnitus (constant ringing in ears)
- hearing loss (deafness)
- burst eardrum (extremely loud sounds)

The duration of the sound is important - see sheet for details.